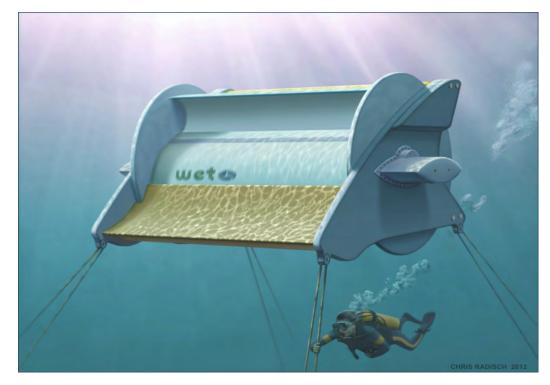
Waterotor Energy Technologies Inc.

- Waterflow Becomes Power -


Briefing to the Offshore Renewables Task Force; National Ocean Industries Association

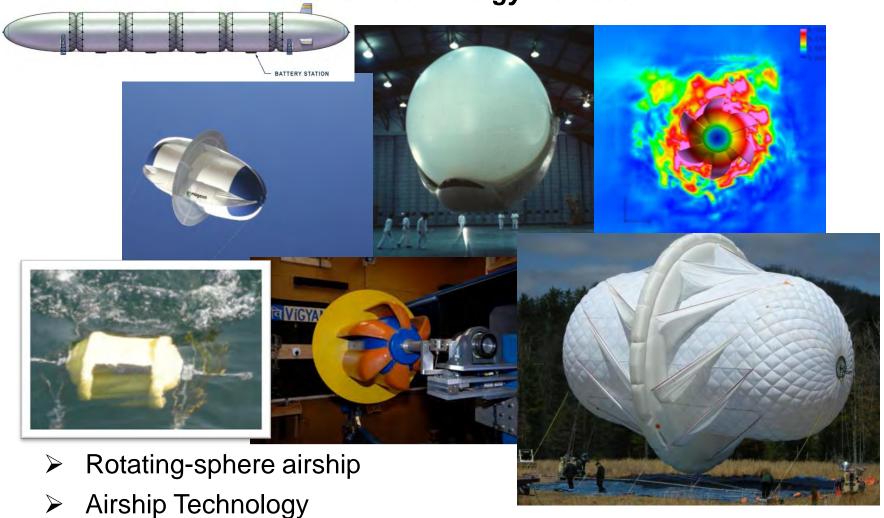
16 March 2012

Waterotor Energy Technologies

Anthony J. (Tony) Asterita

Washington DC Operations
1108 Villamay Blvd.
Alexandria, VA 22307
703-768-3580; tonyj@waterotor.com

Company Profile


- Early stage with small, committed 'family' of investors
- Directed and managed by an experienced core team
- Vision Economically viable renewable energy systems that enable new global energy markets
- Developed and tested 'Waterotor', a breakthrough technology that harvests electrical power from slow flows, beyond the ability of existing systems
- Business model evolving; focus on burn rate and capturing initial orders
- 'End game' is profitable income from licensing, royalty, sale of technology & joint ventures

Elevator Pitch

- We focus on developing economically viable renewable energy solutions
- We validated Waterotor with a 5 cents per kilowatt-hour
 - verified with field tests
- We are ready to demonstrate with a preproduction prototype as prelude to market insertion
- Performance in slow flows opens new markets on a global scale beyond the capability of competing systems

20+ years Experience with Rotating Aerospace Structures and Economical Energy Devices

Wind rotors and Waterotors

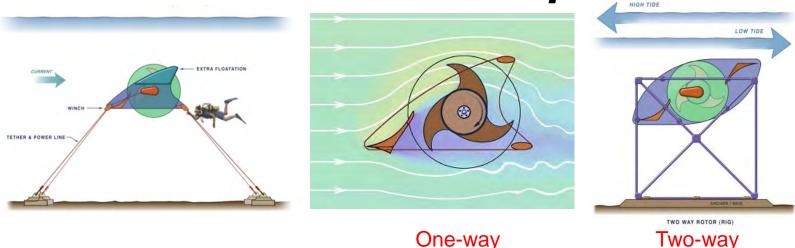
Technology Evolution ... Two Paths

WaterRotorTM

Waterotor Development History

RED & tests in design, fluid flow, hydrodynamics and Structures

2007 - 2009 Experiments, Studies, Analysis


2010 - Initial Verification Testing

2010 - Patent Applications (world -wide)

2011 – Prototype Demonstrations & Validation

2012 – Prototype testing, initial sales

Waterotor Description

- Low-Head Hydrokinetic System with optimum design
- Three-vane drum rotor with unique design that rotates about a horizontal axis in response to water flowing from 1.7 mph to over 10 mph
- Rotational energy is converted to electrical power through on-board generators and transferred by cable to shoreline, then stored, or used
- Ballast sustains the Waterotor which descends or ascends to depth for best currents. Anchors and / or buoys secure the device

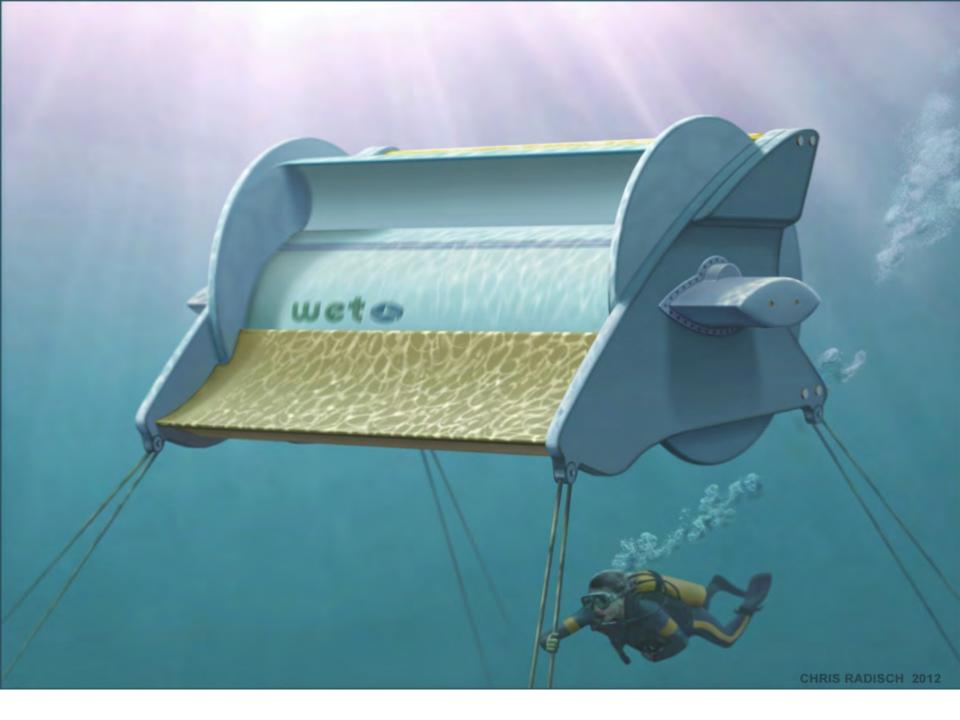
Low-Head Hydrokinetic System Types

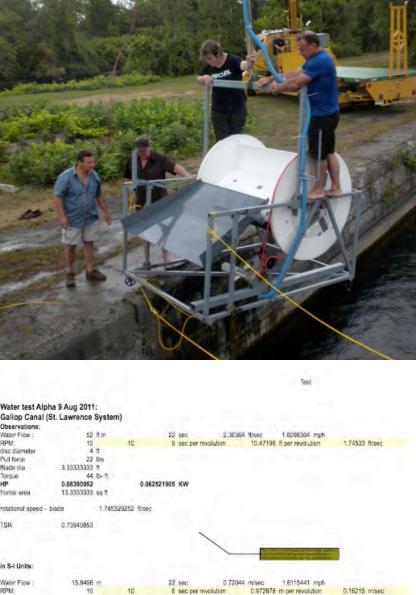
- Slow rotation, torque driven
- Lower efficiency
- Shallow & deepwater
- Simple anchoring
- Environmentally friendly
- Deflects debris
- Omni-directional

Horizontal Axis

- Rapidly spinning, speed driven
- Higher efficiency
- Deepwater
- Requires fixed Moorings
- > Fish kill concerns
- Susceptible to debris
- Uni-directional

Waterotor - Vertical Axis System; Rotated Horizontally


Waterotor Advantages


- Scalable from kilowatt to megawatt outputs
- Wide water flow speed range
- Simple bottom fixtures
- Mobile for easy deployment

- Environmentally friendly; no fish kill; deflects debris via natural boundary layer
- Can be applied in clusters for increased power
- Inexpensive to deploy and operate (5 cents/kW-hr)

Resolves the Market 'Pain' for an Economical Renewable Solution

First Test 1.7 mph Flow

RPM: 0.972878 m per revolution 6 sec per revolution disc diameter 1.2192 m Pull force 9.979024 Kg

Blade dia 1.016 m 6.08321303 N-m Torque Power output 62.4725401 W

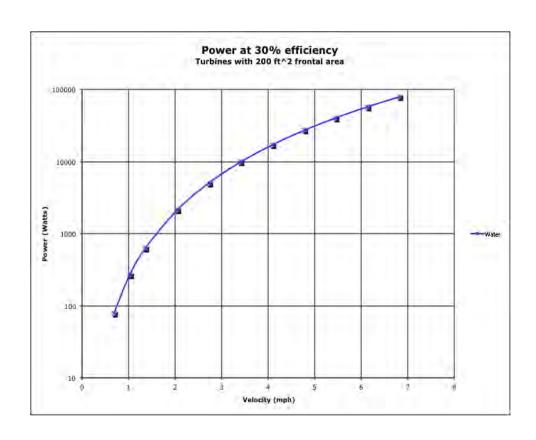
0.083743351 HP 1.23870667 sq m 231.592961 W 0.310446329 HP

0.10472

0.73840853

frontal area

Power available rotational speed - blade


- 1 inch = 0.025 4 meter
- 1 feet = 0.304 8 meter
- 1 meter/second = 2.236 936 292 1 mile/hour (mph)
- 1 lb. lbs = 0.453 592 37 klogram
- 1 pound foot = 1.355 817 952 newton meter
- 1 square foot = 0.092 903 04 square meter

Waterotor Demonstrated High Efficiency in Both Tests

Testing verified efficiency of 30%, close to maximum practical limits and beyond the capability of existing systems - a result of unique vane design

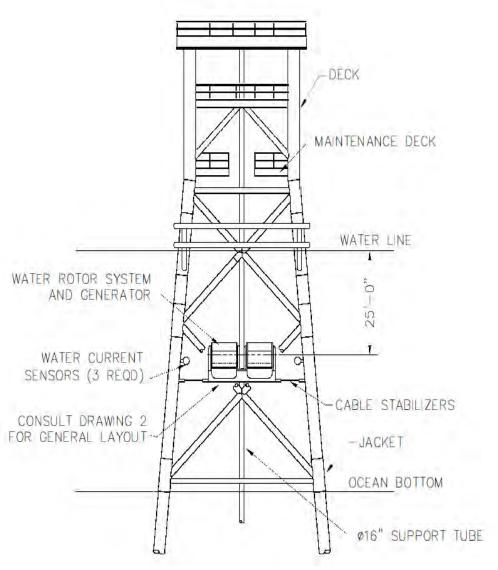
Design → Efficiency → Economical viability

- Efficiency is defined as power output divided by the total energy of the captured flow
- Betz limit of 59% is theoretical maximum
- Waterotor efficiency of 30% is 4 times greater than standard drum-type rotors
- Efficiency is directly related to low cost per kilowatt-hour & economical viability

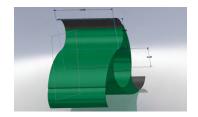
Next Step

Real World operational testing of a preproduction Waterotor as a prelude to

market insertion



Preproduction Testing Waterotor Test Rig


- Test Platform for preproduction units
- ➤ In Gulf, 10 miles south of Galveston, Texas
- ➤ Flow averages 3 mph for 48 weeks each (Univ. of Houston study)
- Production readiness & customer demos late 2012
- Prelude to first orders

Waterotor Installation

- Mounted 25 ft below surface and locked on indexing table for directional control
- Sensors indicate flow direction and speed
- Winch at deck level to raise for maintenance
- Provide 20 kW to deck for monitoring & distribution

Gulf Oil Rig Platform Market

How To Resolve The Market's 'Pain'

- Reduce dependency on solar and wind systems which have low availability
- Reduce dependency on diesel fuel which is expensive, manpower intensive, and requires long-lead permits and approvals
- Waterotor coupled with diesel an interim solution
- > Applications:
 - Extract oil from 'depleted' wells Power to raise oil from 200-ft level to surface
 - Unmanned platforms Power for lights, fog horns, repeaters (liability issues / hazard to navigation)
 - Manned platforms Separators, pumps, cranes. onboard systems

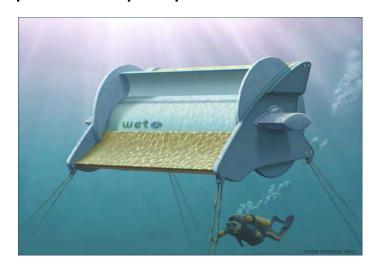
More than 6,000 Waterotors required for this market segment

Philippine Market Opportunity

- More than 20 million citizens without power
- Typical of other island nations in the region
- Dispersed villages with 200 to 500 inhabitants
 - Unreachable by grid systems
- Pilot project being developed with Gov't

Follow-on Market Potential 2015

Ref: AltProfits 2009

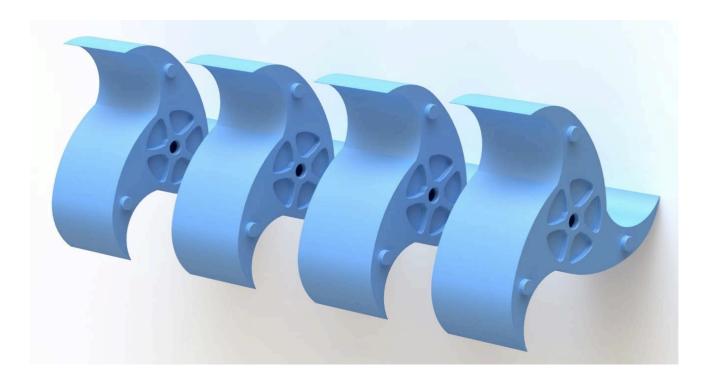

	Capacity (GW)	Market Size (\$B)	Market Growth	W.E.T Potential
Small Hydro (1 to 10 Mw)	110	38.5	(5 years) 16%	(<1% Market Share) \$350M
Large Hydro (10 Mw & hig		331	5%	\$2.5B

Small Hydro Waterotors will be deployed in tidal estuaries and ocean currents

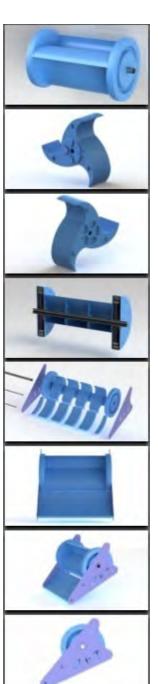
Large Hydro Waterotors will be deployed in major ocean currents such as the Florida Straits and Gulf Stream

Initial Waterotor Products

- > 5 kW & 10 kW commercial Waterotors
 - First Deliverables Late 2012
- ➤ 20 kW commercial and industrial Waterotors
 First Deliverables 2013
- 200+ kW Waterotors
 - Development to pre-production,18 months



Manufacturing


- ➤ RTS is a successful manufacturer with facilities in Canada and USA; uses 'Roto-mold' as core to their processes
- > RTS represents a low cost breakthrough for Waterotors; allows attractive cost margins
- ➤ RTS is manufacturer of Waterotor sizes up to 20+ kW to meet Gulf Coast & Philippine Markets
- Future manufacturing to be independently contracted to the best assessed companies, world-wide

Roto-mold Modular Approach Tailored Manufacturing

Shown here are four Waterotor vane elements; in this example each element provides a forth of the total power. Additional elements increase power output accordingly. This modular approach facilitates manufacturing flexibility to match market demands.

Status

- > Technology breakthrough enables new markets
- > Focus on Gulf and Philippine markets
- > Testing to date verified performance
- > Operational (Preproduction) testing is next
- Initial Manufacturer on-board
- > Final investment round discussions ongoing
 - Founders shares available no dilution or resale restrictions
 - JV, licensing, royalties & sale of technology are options
 - Subscription and Shareholder agreement available

Thank You

Questions?


Contact Info:

Anthony J. (Tony) Asterita

Director, Waterotor Energy Technologies

703-768-3580 (O)

408-489-1401 (M)

